

Homocoupling of alkyl-, alkenyl-, and arylboronic acids

J. R. Falck,* Suchismita Mohapatra, Muralidhar Bondlela and Sylesh K. Venkataraman

Departments of Biochemistry and Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9038, USA

Received 3 September 2002; accepted 5 September 2002

Abstract—Alkyl-, alkenyl-, and arylboronic acids undergo $Ag_2O/CrCl_2$ mediated homocoupling in moderate to good yields under mild conditions. The general utility of this methodology is illustrated by an intramolecular annulation between *sp* and *sp*³ centers. © 2002 Published by Elsevier Science Ltd.

The Pd-catalyzed homocoupling¹ of aryl- and alkenylboronic acids has become a popular alternative to Cu and other transition metal mediated dimerizations typified by the Ullmann² and Pschorr reactions.³ However, despite numerous improvements^{4–7} in recent years to this version of the Suzuki protocol, some substrates give poor yields and/or afford mixtures of stereoisomers. Faced with such a situation, we re-investigated early reports^{8,9} of aqueous AgNO₃ mediated boronic acid homocouplings and describe herein a CrCl₂ catalyzed version applicable to an extensive variety of alkyl-, alkenyl-, and arylboronic acids in organic solvents under mild conditions (Eq. (1)).

$$\begin{array}{c} \text{R-B(OH)}_2 \quad \underbrace{\text{Ag}_2 \text{O}}_{\text{CrCl}_2 \text{ (cat)}} \quad \text{R-R} \\ \text{THF} \end{array}$$
(1)

To accommodate a wider range of substrates than possible using the previous aqueous media,^{8,9} various metal salts [e.g. NiCl₂, CuBr, Pb(OAc)₂, Tl₂CO₃, MnO₂] in typical organic solvents were evaluated. Generally, silver salts were the most reliable, but yields of homocoupled adduct were generally poor unless the reaction was sustained by a catalytic amount of CrCl₂. Notably, the reaction was unsatisfactory using CrCl₂ alone, even in stoichiometric quantities, and in hydroxylic solvents. THF proved superior to DMSO, DMF, Et₂O, and toluene. Coupling failed completely using boronate esters. While the exact mechanism of the reaction remains obscure, we favor an initial deboronylation via the corresponding silver salt, analogous to the de-carboxylation step in the Borodin–Hunsdiecker reaction,¹⁰ resulting in a labile organo-silver or -chromium¹¹ intermediate that subsequently dimerizes.

Simple and functionalized aliphatic boronic acids $(1, 3, 5, and 7)^{12}$ afforded moderate to good yields of dimer (2, 4, 6, and 8, respectively) using Ag₂O with catalytic CrCl₂ in THF at 65°C overnight (Table 1). This contrasts with the normally sluggish reactivity of *n*-alkyl groups during Pd-catalyzed Suzuki homocouplings.⁴ Despite its low yield, the conversion of α -methoxy boronic acid 9 to di-ether 10, obtained as a mixture (~1:1) of *erythro/threo* isomers, merits attention; analogous transformations creating new bonds between carbons bearing heteroatoms are rare¹³ and have obvious synthetic utility since two stereocenters are established simultaneously.

Reaction of vinyl boronic acid 11 under the standard conditions proceeded stereospecifically and furnished E,E-12 as the sole product in excellent yield. A comparable coupling using PdCl₂/Na₂CO₃ gave a somewhat lower yield as a mixture of Z,E-stereoisomers.⁴ Whereas earlier workers noted only protonolysis with aqueous AgNO₃,⁹ we observed arylboronic acids readily homocoupled when subjected to our standard conditions. Electron withdrawing (13 to 14) or donating (15 to 16) substituents had comparatively little effect on the vield. Steric hindrance in some instances (17 to 18) seemed to improve coupling efficiency, possibly by retarding competing protonolysis which was the principle side reaction in most cases. Styryl (19 to 20) and *cis*-olefins (21 to 22), likewise, were compatible with the reaction conditions. The dimerizations of 23 and 25

Keywords: dimerisation; annulation; chromium; boron; coupling reactions.

^{*} Corresponding author. Tel.: 214-648-2406; fax: 214-648-6455; e-mail: j.falck@utsouthwestern.edu

^{0040-4039/02/\$ -} see front matter @ 2002 Published by Elsevier Science Ltd. PII: S0040-4039(02)01897-X

Table 1. Homocoupling of boronic acids

Entry	Boronic Acid	Adduct	Yield (%)
1	Ph B(OH) ₂	$Ph \longrightarrow P_2 Ph$	78
2	H ₃ CO H ₃ CO 3	$\begin{array}{c} H_{3}CO \\ H_{3}CO \\ H_{3}CO \\ \end{array} \begin{array}{c} L \\ H_{2} \\ H_{2} \\ \end{array} \begin{array}{c} OCH_{3} \\ OCH_{3} \\ H_{3} \\ \end{array}$	72
3	F 5 B(OH) ₂	F 6 F	65
4	Ph_2^{tBuSiO} 7 $B(OH)_2$	Ph ₂ ^t BuSiO	68
5	MeO MeO B(OH) ₂		23
6	H2 B(OH)2 11		95
7	F 13 B(OH) ₂		62
8	OMe B(OH) ₂		68
9	OMe B(OH) ₂ MeO 17		75
10	B(OH) ₂ 19	20	83
11	B(OH) ₂	<i>n</i> Bu 22	88
12	23 B(OH) ₂	Aco 24	73
13	0 B(OH) ₂ 25	26 C	85
14	19 + 1	+ 2 27 (1:1.1)	81
15	MOMO 28	MOMO 29	85

generating 24 and 26, respectively, in good yield deserve particular attention. Due to competing π -allyl complex formation, these homocouplings failed completely under the usual Pd-catalyzed conditions.¹ Interestingly, reaction of an equimolar amount of 1 and 19 led to an ~1:1.1 mixture of cross-coupled adduct 27 (sp^2-sp^3 union) and homocoupled 2 (sp^3-sp^3 union); little, if any, biphenyl 20 (sp^2-sp^2 union) was isolated, presumably reflecting its kinetically slower rate due to steric hindrance. The potential utility of the latter mixed coupling was illustrated in the intramolecular cyclization that yielded 29 from 28. In conclusion, we report an operationally simple, highly efficient homocoupling of a wide range of boronic acids. In contrast with dimerizations mediated by Pdcatalysts, this methodology is useful for the stereospecific homocoupling of olefinic boronic acids and is compatible with allylic acetates and ethers.

General procedure: Freshly prepared Ag_2O (3 mmol) and $CrCl_2$ (5 mol%) were added to a well stirred solution of boronic acid (1 mmol) in anhydrous THF (4 mL) under an argon atmosphere, then heated at 65°C. After 10–12 h, the mixture was cooled to room temper-

ature, filtered, diluted with an equal volume of Et_2O , washed with H_2O (10 mL), brine (10 mL), dried and concentrated in vacuo. Purification of the residue via SiO_2 chromatography provided the adducts in the indicated yields (Table 1).

Acknowledgements

Supported financially by the USPHS NIH (GM31278, DK38226), the Robert A. Welch Foundation, and an unrestricted grant from Taisho Pharmaceutical Co., Ltd.

References

- 1. Miyaura, N.; Suzuki, A. Main Group Met. Chem. 1987, 10, 295–300.
- Hassan, J.; Sevignon, M.; Gozzi, C.; Schulz, E.; Lemaire, M. Chem. Rev. 2002, 102, 1359–1469.
- Nonhebel, D. C. Chem. Soc., Spec. Publ. 1970, 24, 409– 437.
- 4. Kabalka, G. W.; Wang, L. Tetrahedron Lett. 2002, 43, 3067–3068.
- 5. Lei, A.; Zhang, X. Tetrahedron Lett. 2002, 43, 2525-2528.
- Smith, K. A.; Campi, E. M.; Jackson, W. R.; Marcuccio, S.; Naeslund, C. G. M.; Deacon, G. B. *Synlett* 1997, *1*, 131–132.
- Wong, M. S.; Zhang, X. L. Tetrahedron Lett. 2001, 42, 4087–4089.
- Snyder, H. R.; Kuck, J. A.; Johnson, J. R. J. Am. Chem. Soc. 1938, 60, 105–111.
- Johnson, J. R.; Van Campen, M. G., Jr.; Grummitt, O. J. Am. Chem. Soc. 1938, 60, 111–115.
- Jacques, J. Compt. Rend. Acad. Sci., Ser. IIc: Chim. 1999, 2, 181–183.
- 11. Sustmann, R.; Altevogt, R. Tetrahedron Lett. 1981, 22, 5167–5170.
- Spectral data for new compounds, 5: ¹H NMR (400 MHz, CDCl₃) δ 0.77–0.85 (m, 2H), 1.34–1.48 (m, 2H),

1.50-1.72 (m, 2H), 2.55-2.65 (m, 2H), 4.80-4.91 (bs, 2H), 6.91-7.02 (m, 2H), 7.07-7.18 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 17.1, 28.2, 34.4, 36.8, 115.3, 130.2, 134.8, 160.2. 6: ¹H NMR δ 1.73–2.01 (s, 12H), 2.55 (t, 4H, J = 7.6 Hz), 6.91–6.98 (m, 4H), 7.09–7.14 (m, 4H); ¹³C NMR & 30.0, 30.3, 32.3, 36.2, 114.9, 129.5, 134.5, 160.2. 9 pinacol ester: ¹H NMR δ 1.24 (d, 12H, J=3.3 Hz), 1.25-1.48 (m, 2H), 1.60-1.83 (m, 4H), 2.58-2.65 (m, 2H), 3.16 (t, 1H, J=8.1 Hz), 3.32 (s, 3H), 7.14–7.27 (m, 5H); ¹³C NMR δ 21.5, 23.6, 25.8, 32.9, 35.6, 55.1, 73.0, 88.8, 125.5, 127.7, 127.9, 135.5. 10 (mixture of erythro/threostereoisomers: ¹H NMR δ 1.31–1.68 (m, 12H), 2.61 (t, 4H, J=7.6 Hz), 3.08–3.13 (m, 2H), 3.30 (s, 3H), 3.31 (s, 3H), 7.18–7.39 (m, 10H); ¹³C NMR δ 23.5, 23.8, 24.4, 28.6, 30.4, 31.5, 32.9, 54.4, 55.0, 79.0, 82.2, 125.3, 127.9, 130.2, 135.2. 12: ¹H NMR δ 1.71 (apparent quintet, J=7.3 Hz), 2.10 (apparent quintet, 4H, J=7.3 Hz), 2.62 (t, 4H, J=7.8 Hz), 5.54-5.64 (m, 2H), 5.98-6.08 (m, 2H),7.18–7.22 (m, 6H), 7.25–7.30 (m, 4H); ¹³C NMR δ 29.9, 35.4, 36.2, 125.4, 127.6, 128.3, 128.5, 133.2, 138.3. **22**: ¹H NMR δ 0.85–0.92 (m, 6H), 1.21–1.45 (m, 12H), 2.05–2.20 (m, 4H), 3.40 (d, 4H, J=6.1 Hz), 5.52–5.56 (m, 4H), 7.18–7.32 (m, 8H); ¹³C NMR δ 14.9, 22.7, 26.7, 30.2, 32.4, 34.1, 125.9, 126.6, 129.2, 129.5, 130.0, 134.6, 138.8, 139.1. 23: ¹H NMR (300 MHz): δ 2.09 (s, 3H), 4.73 (d, 2H, J = 6.3 Hz), 4.76–4.85 (bs, 2H), 6.05–6.15 (m, 1H), 7.10 (d, 1H, J = 16.6 Hz), 7.25–7.31 (m, 1H), 7.37–7.44 (m, 4H), 7.69 (d, 1H, J = 7.0 Hz); ¹³C NMR δ 18.0, 70.6, 123.2, 125.6, 126.8, 127.3, 127.7, 128.4, 128.5, 136.6, 174.6. 24: ¹H NMR δ 2.01 (s, 6H), 4.54 (d, 2H, J=6.1 Hz), 6.13–6.20 (m, 2H), 6.28 (d, 2H, J=15.8 Hz), 7.14 (d, 2H, J=7.3 Hz), 7.29–7.38 (m, 4H), 7.62 (d, 2H, J=7.6Hz); ¹³C NMR δ 18.4, 71.7, 175.1, 125.8, 126.1, 126.6, 126.7, 127.2, 127.7, 132.6, 136.2. 27: ¹H NMR δ 2.84– 2.88 (m, 2H), 2.95–3.01 (m, 2H), 5.31 (dd, J=9.7, 1.2 Hz, 1H), 6.66 (dd, J = 15.8, 1.5 Hz, 1H); 6.97–7.04 (m, 1H), 7.15–7.28 (m, 8H), 7.49–7.51 (m, 1H); 13 C NMR δ 35.8. 36.9, 114.8, 126.0, 126.1, 127.3, 127.7, 128.5, 129.7, 133.6, 136.6, 136.8, 141.3.

 Falck, J. R.; Bhatt, R. K.; Ye, J. J. Am. Chem. Soc. 1995, 117, 5973–5982.